Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Electron. j. biotechnol ; 52: 85-92, July. 2021. graf, tab
Artigo em Inglês | LILACS | ID: biblio-1283600

RESUMO

BACKGROUND: Nonribosomal peptide synthases (NRPS) can synthesize functionally diverse bioactive peptides by incorporating nonproteinogenic amino acids, offering a rich source of new drug leads. The bacterium Escherichia coli is a well-characterized production host and a promising candidate for the synthesis of nonribosomal peptides, but only limited bioprocess engineering has been reported for such molecules. We therefore developed a medium and optimized process parameters using the design of experiments (DoE) approach. RESULTS: We found that glycerol is not suitable as a carbon source for rhabdopeptide production, at least for the NRPS used for this study. Alternative carbon sources from the tricarboxylic acid cycle achieved much higher yields. DoE was used to optimize the pH and temperature in a stirred-tank reactor, revealing that optimal growth and optimal production required substantially different conditions. CONCLUSIONS: We developed a chemically defined adapted M9 medium matching the performance of complex medium (lysogeny broth) in terms of product concentration. The maximum yield in the reactor under optimized conditions was 126 mg L-1, representing a 31-fold increase compared to the first shaking-flask experiments with M9 medium and glycerol as the carbon source. Conditions that promoted cell growth tended to inhibit NRPS productivity. The challenge was therefore to find a compromise between these factors as the basis for further process development.


Assuntos
Peptídeo Sintases/metabolismo , Reatores Biológicos/microbiologia , Escherichia coli , Temperatura , Biotecnologia , Carbono/metabolismo , Modelos Estatísticos , Eletroforese em Gel de Poliacrilamida , Bioengenharia , Concentração de Íons de Hidrogênio
2.
Electron. j. biotechnol ; 28: 95-100, July. 2017. tab
Artigo em Inglês | LILACS | ID: biblio-1016080

RESUMO

Mannheimia haemolytica leukotoxin (LKT) is a known cause of bovine respiratory disease (BRD) which results in severe economic losses in the cattle industry (up to USD 1 billion per year in the USA). Vaccines based on LKT offer the most promising measure to contain BRD outbreaks and are already commercially available. However, insufficient LKT yields, predominantly reflecting a lack of knowledge about the LKT expression process, remain a significant engineering problem and further bioprocess optimization is required to increase process efficiency. Most previous investigations have focused on LKT activity and cell growth, but neither of these parameters defines reliable criteria for the improvement of LKT yields. In this article, we review the most important process conditions and operational parameters (temperature, pH, substrate concentration, dissolved oxygen level, medium composition and the presence of metabolites) from a bioprocess engineering perspective, in order to maximize LKT yields.


Assuntos
Animais , Bovinos , Toxinas Bacterianas/biossíntese , Mannheimia haemolytica/metabolismo , Complexo Respiratório Bovino/microbiologia , Exotoxinas/biossíntese , Temperatura , Oligoelementos , Carbono/metabolismo , Mannheimia haemolytica/patogenicidade , Aminoácidos/metabolismo , Concentração de Íons de Hidrogênio , Cinetina
3.
Electron. j. biotechnol ; 19(6): 38-42, Nov. 2016. ilus
Artigo em Inglês | LILACS | ID: biblio-840311

RESUMO

Background: Mannheimia haemolytica is the primary bacterial pathogen in causing bovine respiratory disease with tremendous annual losses in the cattle industry. The leukotoxin from M. haemolytica is the predominant virulence factor. Several leukotoxin activity assays are available but not standardized regarding sample preparation and cell line. Furthermore, these assays suffer from a high standard error, a prolonged time consumption and often complex sample pretreatments, which is important from the bioprocess engineering point of view. Results: Within this study, an activity assay based on the continuous cell line BL3.1 combined with a commercial available adenosine triphosphate viability assay kit was established. The leukotoxin activity was found to be strongly dependent on the sample preparation. Furthermore, the interfering effect of lipopolysaccharides in the sample could be successfully suppressed by adding polymyxin B. We reached a maximum relative P95 value of 14%, which is more than seven times lower compared to current available assays as well as a time reduction up to 88%. Conclusion: Ultimately, the established leukotoxin activity assay is simple, fast and has a high reproducibility. Critical parameters regarding the sample preparation were characterized and optimized making complex sample purification superfluous.


Assuntos
Animais , Complexo Respiratório Bovino/microbiologia , Exotoxinas/análise , Mannheimia haemolytica/patogenicidade , Técnicas Microbiológicas , Trifosfato de Adenosina , Lipopolissacarídeos , Polimixina B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA